SUMO2 and SUMO3 transcription is differentially regulated by oxidative stress in an Sp1-dependent manner

Author:

Sang Jing1,Yang Kai1,Sun Yueping1,Han Yan1,Cang Hui1,Chen Yuying1,Shi Guiying1,Wang Kangmin1,Zhou Jie2,Wang Xiangrui2,Yi Jing1

Affiliation:

1. Department of Biochemistry and Molecular Cell Biology, Key Laboratory of the Education Ministry for Cell Differentiation and Apoptosis, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China

2. Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China

Abstract

Protein SUMOylation (SUMO is small ubiquitin-related modifier) is a dynamic process that is strictly regulated under physiological and pathological conditions. However, little is known about how various intra- or extra-cellular stimuli regulate expression levels of components in the SUMO system. SUMO isoforms SUMO2 and SUMO3 can rapidly convert to be conjugated in response to a variety of cellular stresses. Owing to the limitations of sequence homology, SUMO2 and SUMO3 cannot be differentiated between and are thus referred to as SUMO2/3. Whether these two isoforms are regulated in distinct manners has never been addressed. In the present paper we report that the expression of SUMO3, but not SUMO2, can be down-regulated at the transcription level by cellular oxidative stress. In the present study, we checked SUMO2 and SUMO3 mRNA levels in cells exposed to various doses of H2O2 and in cells bearing different levels of ROS (reactive oxygen species). We found an inverse relationship between SUMO3 transcription and ROS levels. We characterized a promoter region specific for the mouse Sumo3 gene that is bound by the redox-sensitive transcription factor Sp1 (specificity protein 1) and demonstrated oxidation of Sp1, as well as suppression of Sp1–DNA binding upon oxidative stress. This revealed for the first time that the expression of SUMO2 and SUMO3 is regulated differently by ROS. These findings may enhance our understanding about the regulation of SUMOylation and also shed light on the functions of Sp1.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3