Relationship between protein structural fluctuations and rebinding dynamics in ferric haem nitrosyls

Author:

Hunt Neil T.1,Greetham Gregory M.2,Towrie Michael2,Parker Anthony W.2,Tucker Nicholas P.3

Affiliation:

1. Department of Physics, University of Strathclyde, Glasgow G4 0NG, Scotland, U.K.

2. STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0QX, U.K.

3. Strathclyde Institute for Pharmaceutical and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, Scotland, U.K.

Abstract

The interaction of nitric oxide (NO) with haem proteins is widespread in biology. In the current paper, we present the first ultrafast 2D-IR (two-dimensional infrared) spectroscopic analysis of haem nitrosylation, which has been combined with time-resolved IR pump–probe studies to investigate the relationship between equilibrium vibrational dynamics of the haem environment and ligand rebinding behaviour following photolysis of NO from the Fe(III)–NO site. Studies of two haem proteins, Mb (myoglobin) and Cc (cytochrome c), which play different physiological roles, reveal marked contrasts in the ultrafast fluctuations of the protein pockets containing the haem, showing that the Mb pocket is somewhat more flexible than that of Cc. This correlates strongly with slower observed photolysis rebinding kinetics of Mb–NO compared with Cc–NO, and indicates a direct link between ultrafast fluctuations and biological functionality. Furthermore, this indicates the validity of linear response theories in relation to protein ligand binding. Finally, 2D-IR shows that Cc–NO displays two distinct structural sub-sites at room temperature that do not exchange on the timescales accessible via the NO vibrational lifetime.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3