Purification, characterization, DNA sequence and cloning of a pimeloyl-CoA synthetase from Pseudomonas mendocina 35

Author:

BINIEDA Andrew1,FUHRMANN Martin1,LEHNER Bruno1,REY-BERTHOD Claudine1,FRUTIGER-HUGHES Séverine2,HUGHES Graham2,SHAW Nicholas M.1

Affiliation:

1. Biotechnology Department, Lonza AG, CH-3930 Visp, Switzerland

2. Département de Biochimie Médicale, Centre Médical Universitaire, CH-1211 Genève 4, Switzerland

Abstract

A pimeloyl-CoA synthetase from Pseudomonas mendocina 35 was purified and characterized, the DNA sequence determined, and the gene cloned into Escherichia coli to yield an active enzyme. The purified enzyme had a pH optimum of ≈ 8.0, Km values of 0.49 mM for pimelic acid, 0.18 mM for CoA and 0.72 mM for ATP, a subunit Mr of ≈ 80000 as determined by SDS/PAGE, and was found to be a tetramer by gel-filtration chromatography. The specific activity of the purified enzyme was 77.3 units/mg of protein. The enzyme was not absolutely specific for pimelic acid. The relative activity for adipic acid (C6) was 72% and for azaleic acid (C9) was 18% of that for pimelic acid (C7). The N-terminal amino acid was blocked to amino acid sequencing, but controlled proteolysis resulted in three peptide fragments for which amino acid sequences were obtained. An oligonucleotide gene probe corresponding to one of the amino acid sequences was synthesized and used to isolate the gene (pauA, imelic cid-tilizing ) coding for pimeloyl-CoA synthetase. The pauA gene, which codes for a protein with a theoretical Mr of 74643, was then sequenced. The deduced amino acid sequence of the enzyme showed similarity to hypothetical proteins from Archaeoglobus fulgidus, Methanococcus jannaschii, Pyrococcus horikoshii, E. coli and Streptomyces coelicolor, and some limited similarity to microbial succinyl-CoA synthetases. The similarity with the protein from A. fulgidus was especially strong, thus indicating a function for this unidentified protein. The pauA gene was cloned into E. coli, where it was expressed and resulted in an active enzyme.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3