Proteolytic modification of the heparin-binding affinity of extracellular superoxide dismutase

Author:

Karlsson K1,Edlund A2,Sandström J3,Marklund S L1

Affiliation:

1. Department of Clinical Chemistry, Umeå University Hospital, S-901 85 Umeå, Sweden

2. SYMBICOM AB, P.O. Box 1451, S-901 24 Umeå, Sweden

3. Depaament of Microbiology, Umeå University, S-901 87 Umeå, Sweden

Abstract

The heparin-binding affinity of the tetrameric extracellular superoxide dismutase (EC-SOD) is a result of the cooperative effect of the heparin-binding domains of the subunits, located in the hydrophilic, strongly positively charged C-terminal ends. EC-SOD C, the high-heparin-affinity type, exposed to immobilized trypsin and plasmin was found to rapidly lose its affinity for heparin, without any loss of enzymic activity or major change in molecular mass as judged by size-exclusion chromatography. Heparin and dextran sulphate 5000 inhibited the proteolysis, suggesting that EC-SOD C sequestered by heparan sulphate proteoglycan in vivo is partially protected against proteolysis. The loss of heparin-affinity occurred with the stepwise formation of intermediates, and the pattern upon chromatography on heparin-Sepharose and subsequent immunoblotting was compatible with the notion that the changes are due to sequential truncations of heparin-binding domains from subunits composing the EC-SOD tetramers. A similar pattern with intermediates and apparent truncations has previously been found with EC-SOD of human plasma. The findings show that the unique design of the heparin-binding domain of EC-SOD allows easy modification of the heparin-affinity by means of limited proteolysis, and suggest that such proteolysis is a major contributor to the heterogeneity in heparin-affinity of EC-SOD in mammalian plasma.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3