Analysis of [3H]inositol phosphate formation and metabolism in cerebral-cortical slices. Evidence for a dual metabolism of inositol 1,4-bisphosphate

Author:

Batty I H1,Nahorski S R1

Affiliation:

1. Department of Pharmacology and Therapeutics, University of Leicester, P.O. Box 138, Medical Sciences Building, University Road, Leicester LE1 9HN, U.K.

Abstract

Muscarinic-receptor-mediated phosphoinositide hydrolysis in rat cerebral cortex was investigated by analysis of the kinetics of [3H]inositol phosphate formation and degradation in myo-[2-3H]inositol-labelled tissue slices. Carbachol stimulated rapid (5 s) increases in the concentrations of [3H]Ins(1,4,5)P3, [3H]Ins(1,3,4,5)P4 and [3H]Ins(1,4)P2. Stimulated accumulation of [3H]Ins(1,3,4)P3, [3H]Ins(1,3)P2 and [3H]Ins(3,4)P2 and [3H]Ins(1/3)P or of [3H]Ins(4)P occurred only subsequently and with a sequence indicating formation by successive dephosphorylation of [3H]Ins(1,3,4,5)P4 or of Ins(1,4)P2 respectively. A similar sequence was inferred from the order of rapidity with which the accumulations of [3H]inositol polyphosphates, resulting from sustained (5 min) carbachol stimulation in the presence of LiCl, were reversed when muscarinic receptors were subsequently blocked with atropine. During this latter period of receptor blockade, radiolabel lost from [3H]inositol polyphosphates was quantitively recovered as [3H]inositol monophosphates owing to effective inhibition of monophosphatase by Li+, and the rate of poly- into mono-phosphate conversion was similar to agonist-stimulated rates of monophosphate accumulation. This implies that, even during persistent stimulation, polyphosphoinositide, not PtdIns, is the substrate for phosphoinositidase C. Quantitative comparison of the degradation of [3H]inositol poly- to mono-phosphates after receptor blockade unexpectedly suggests the dual hydrolysis of [3H]Ins(1,4)P2 to [3H]Ins(1)P and [3H]Ins(4)P. This result advises cautious interpretation of the origin of [3H]Ins(1)P in stimulated tissue, but, with other data presented, allows calculation from the observed ratio of [3H]Ins(1/3)P:[3H]Ins(4)P that a minimum of approx. 50% of the [3H]Ins(1,4,5)P3 produced during persistent muscarinic-receptor stimulation is metabolized by Ins(1,4,5)P3 3-kinase.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3