Queuosine modification of tRNA: its divergent role in cellular machinery

Author:

Vinayak Manjula1,Pathak Chandramani1

Affiliation:

1. Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study in Zoology, Banaras Hindu University, Varanasi 221005, India

Abstract

tRNAs possess a high content of modified nucleosides, which display an incredible structural variety. These modified nucleosides are conserved in their sequence and have important roles in tRNA functions. Most often, hypermodified nucleosides are found in the wobble position of tRNAs, which play a direct role in maintaining translational efficiency and fidelity, codon recognition, etc. One of such hypermodified base is queuine, which is a base analogue of guanine, found in the first anticodon position of specific tRNAs (tyrosine, histidine, aspartate and asparagine tRNAs). These tRNAs of the ‘Q-family’ originally contain guanine in the first position of anticodon, which is post-transcriptionally modified with queuine by an irreversible insertion during maturation. Queuine is ubiquitously present throughout the living system from prokaryotes to eukaryotes, including plants. Prokaryotes can synthesize queuine de novo by a complex biosynthetic pathway, whereas eukaryotes are unable to synthesize either the precursor or queuine. They utilize salvage system and acquire queuine as a nutrient factor from their diet or from intestinal microflora. The tRNAs of the Q-family are completely modified in terminally differentiated somatic cells. However, hypomodification of Q-tRNA (queuosine-modified tRNA) is closely associated with cell proliferation and malignancy. The precise mechanisms of queuine- and Q-tRNA-mediated action are still a mystery. Direct or indirect evidence suggests that queuine or Q-tRNA participates in many cellular functions, such as inhibition of cell proliferation, control of aerobic and anaerobic metabolism, bacterial virulence, etc. The role of Q-tRNA modification in cellular machinery and the signalling pathways involved therein is the focus of this review.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3