Phencyclidine binds to blood platelets with high affinity and specifically inhibits their activation by adrenaline

Author:

Jamieson G A1,Agrawal A K1,Greco N J1,Tenner T E1,Jones G D2,Rice K C2,Jacobson A E2,White J G3,Tandon N N1

Affiliation:

1. Cell Biology Laboratory, American Red Cross, Rockville, MD 20855, U.S.A.

2. Laboratory of Neurosciences, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, U.S.A.

3. University of Minnesota School of Medicine, Minneapolis, MN 55455, U.S.A.

Abstract

The ion channel probe phencyclidine [1-(1-phenylcyclohexyl)piperidine; PCP] selectively inhibited aggregation, secretion and ultrastructural changes in platelets induced by adrenaline, but did not affect activation induced by other common platelet agonists such as alpha-thrombin, ADP, collagen or ionophore A23187. [3H]PCP bound to platelets with high affinity (Kd 134 +/- 33 nM; 3600 +/- 1020 sites/platelet), as did the thienyl analogue [3H]TCP (1-[1-(2-thienyl)cyclohexyl]piperidine). PCP binding to platelets was increased 3-4-fold in N-methylglucamine buffer in the absence of Na+ ions. Binding was unaffected by haloperidol and was only weakly inhibited (EC50 10-20 microM), without significant stereoselectivity by the two sets of stereoselective ligands, dexoxadrol/levoxadrol and (+)MK801/(-)MK801. Binding of PCP was not competed for by adrenaline or yohimbine. Only the high-affinity binding of [3H]PCP to platelets was blocked by prior treatment of the platelets with the covalent affinity probe Metaphit, and these platelets no longer aggregated in response to adrenaline although they responded normally to alpha-thrombin, ADP and collagen. These results suggest that platelets contain high-affinity receptors for PCP that can modulate adrenaline-induced platelet activation.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3