UCP3 and its putative function: consistencies and controversies

Author:

Harper M.-E.1,Dent R. M.2,Bezaire V.1,Antoniou A.1,Gauthier A.1,Monemdjou S.1,McPherson R.1

Affiliation:

1. Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada KIH 8M5

2. Department of Psychiatry, Faculty of Medicine, University of Ottawa, 451 Smyth Rd, Ottawa, ON, Canada KIH 8M5

Abstract

The physiological function of uncoupling protein 3 (UCP3) is as yet unknown. Based on its 57% homology to UCP1 whose physiologic function is uncoupling and thermogenesis, UCP3 was attributed with the function of mitochondrial uncoupling through proton-leak reactions. UCP3 is expressed selectively in muscle, a tissue in which it has been estimated that proton leak accounts for approx. 50% of resting energy metabolism. Genetic linkage, association and variant studies suggest a role for UCP3 in obesity and/or diabetes. Studies of the heterologous expression of UCP3 in yeast provide support for the idea that UCP3 can uncouple mitochondrial oxidative phosphorylation, but the physiological relevance of these results is questionable. In vitro studies of mitochondria from Ucp3− − mice provide support, but there are no changes in resting metabolic rate (RMR) of mice. In vivo studies demonstrate increased ATP synthesis, but estimates of substrate oxidation rate indicate no change. Mice that greatly overexpress Ucp3 in muscle have increased RMR. Inconsistent with the function of uncoupling are the observations that fasting results in increased expression of UCP3, but no change in muscle proton leak. Moreover, fasting decreases energy expenditure in muscle. Expression patterns for Ucp3 and lipid-metabolism genes support a physiological role in fatty acid oxidation. Overall, findings support a role for Ucp3 in fatty acid metabolism that may have implications for obesity and/or Type II diabetes.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3