The efficiency and plasticity of mitochondrial energy transduction

Author:

Brand M.D.1

Affiliation:

1. MRC Dunn Human Nutrition Unit, Hills Road, Cambridge CB2 2XY, U.K.

Abstract

Since it was first realized that biological energy transduction involves oxygen and ATP, opinions about the amount of ATP made per oxygen consumed have continually evolved. The coupling efficiency is crucial because it constrains mechanistic models of the electron-transport chain and ATP synthase, and underpins the physiology and ecology of how organisms prosper in a thermodynamically hostile environment. Mechanistically, we have a good model of proton pumping by complex III of the electron-transport chain and a reasonable understanding of complex IV and the ATP synthase, but remain ignorant about complex I. Energy transduction is plastic: coupling efficiency can vary. Whether this occurs physiologically by molecular slipping in the proton pumps remains controversial. However, the membrane clearly leaks protons, decreasing the energy funnelled into ATP synthesis. Up to 20% of the basal metabolic rate may be used to drive this basal leak. In addition, UCP1 (uncoupling protein 1) is used in specialized tissues to uncouple oxidative phosphorylation, causing adaptive thermogenesis. Other UCPs can also uncouple, but are tightly regulated; they may function to decrease coupling efficiency and so attenuate mitochondrial radical production. UCPs may also integrate inputs from different fuels in pancreatic β-cells and modulate insulin secretion. They are exciting potential targets for treatment of obesity, cachexia, aging and diabetes.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 325 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3