Hydrolyses of α- and β-cellobiosyl fluorides by Cel6A (cellobiohydrolase II) of Trichoderma reesei and Humicola insolens

Author:

BECKER Dieter1,JOHNSON Karin S. H.1,KOIVULA Anu2,SCHÜLEIN Martin3,SINNOTT Michael L.1

Affiliation:

1. Department of Paper Science, UMIST, P. O. Box 88, Sackville Street, Manchester M60 1QD, U.K.

2. VTT Biotechnology and Food Research, P.O. Box 1500, FIN-02044 VTT, Espoo, Finland

3. Novo-Nordisk A/S, Novo Alle, DK-2880, Bagsværd, Denmark

Abstract

We have measured the hydrolyses of α- and β-cellobiosyl fluorides by the Cel6A [cellobiohydrolase II (CBHII)] enzymes of Humicola insolens and Trichoderma reesei, which have essentially identical crystal structures [Varrot, Hastrup, Schülein and Davies (1999) Biochem. J. 337, 297-304]. The β-fluoride is hydrolysed according to Michaelis-Menten kinetics by both enzymes. When the ~ 2.0% of β-fluoride which is an inevitable contaminant in all preparations of the α-fluoride is hydrolysed by Cel7A (CBHI) of T. reesei before initial-rate measurements are made, both Cel6A enzymes show a sigmoidal dependence of rate on substrate concentration, as well as activation by cellobiose. These kinetics are consistent with the classic Hehre resynthesis-hydrolysis mechanism for glycosidase-catalysed hydrolysis of the ‘wrong’ glycosyl fluoride for both enzymes. The Michaelis-Menten kinetics of α-cellobiosyl fluoride hydrolysis by the T. reesei enzyme, and its inhibition by cellobiose, previously reported [Konstantinidis, Marsden and Sinnott (1993) Biochem. J. 291, 883-888] are withdrawn. 1H NMR monitoring of the hydrolysis of α-cellobiosyl fluoride by both enzymes reveals that in neither case is α-cellobiosyl fluoride released into solution in detectable quantities, but instead it appears to be hydrolysed in the enzyme active site as soon as it is formed.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3