An analysis of the role of active site protic residues of cytochrome P-450s: mechanistic and mutational studies on 17α-hydroxylase-17,20-lyase (P-45017α also CYP17)

Author:

LEE-ROBICHAUD Peter1,AKHTAR E. Monika1,AKHTAR Muhammad1

Affiliation:

1. Department of Biochemistry, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, U.K.

Abstract

Certain cytochrome P-450s involved in the transformation of steroids catalyse not only the hydroxylation process associated with the group of enzymes, but also an acyl-carbon cleavage reaction. The hydroxylation occurs using an iron-monooxygen species while the acyl-carbon cleavage has been suggested to be promoted by an iron peroxide. In this paper we have studied the role of active site protic residues, Glu305 and Thr306, in modulating the two activities. For this purpose, the kinetic parameters for the hydroxylation reaction (pregnenolone → 17α-hydroxypregnenolone) and two different versions of acyl-carbon cleavage (17α-hydroxypregnenolone → dehydroepiandrosterone and 3β-hydroxyandrost-5-ene-17β-carbaldehyde → 3β-hydroxyandrost-5,16-diene+androst-5-ene-3β,17α-diol) were determined using the wild-type human CYP17 and its eight different single and double mutants. In addition the propensity of the proteins to undergo a subtle rearrangement converting the 450 nm active-form into an inactive counterpart absorbing at 420 nm, was monitored by measuring the of the P-450 → P-420 conversion. The results are interpreted to draw the following conclusions. The functional groups of Glu305 and Thr306 do not directly participate in the two proton delivery steps required for hydroxylation but may be important participants for the provision of a net work of hydrogen bonds for ‘activating’ water that then acts as a proton donor. The loss of any one of these residues is, therefore, only partially debilitating. That the mutation of Thr306 impairs the hydroxylation reaction more than it does the acyl-carbon cleavage is consistent with the detailed mechanistic scheme considered in this paper. Furthermore attention is drawn to the fact that the mutation of Glu305 and Thr306 subtly perturbed the architecture of the active site, which affects the geometry of this region of the protein and therefore its catalytic properties.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3