Mitochondrial (‘mild’) uncoupling and ROS production: physiologically relevant or not?

Author:

Shabalina Irina G.1,Nedergaard Jan1

Affiliation:

1. The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden

Abstract

During the last decade, the possibility that ‘mild’ uncoupling could be protective against oxidative damage by diminishing ROS (reactive oxygen species) production has attracted much interest. In the present paper, we briefly examine the evidence for this possibility. It is only ROS production from succinate under reverse electron-flow conditions that is sensitive to membrane potential fluctuations, and so only this type of ROS production could be affected; however, the conditions under which succinate-supported ROS production is observed include succinate concentrations that are supraphysiological. Any decrease in membrane potential, even ‘mild uncoupling’, must necessarily lead to large increases in respiration, i.e. it must be markedly thermogenic. Mitochondria within cells are normally ATP-producing and thus already have a diminished membrane potential, and treatment of cells, organs or animals with small amounts of artificial uncoupler does not seem to have beneficial effects that are explainable via reduced ROS production. Although it has been suggested that members of the uncoupling protein family (UCP1, UCP2 and UCP3) may mediate a mild uncoupling, present evidence does not unequivocally support such an effect, e.g. the absence of the truly uncoupling protein UCP1 is not associated with increased oxidative damage. Thus present evidence does not support mild uncoupling as a physiologically relevant alleviator of oxidative damage.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3