Probing the druggability of protein–protein interactions: targeting the Notch1 receptor ankyrin domain using a fragment-based approach

Author:

Abdel-Rahman Noha1,Martinez-Arias Alfonso2,Blundell Tom L.1

Affiliation:

1. Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K.

2. Department of Genetics, University of Cambridge, Cambridge CB2 3EH, U.K.

Abstract

In order to achieve greater selectivity in drug discovery, researchers in both academia and industry are targeting cell regulatory systems. This often involves targeting the protein–protein interactions of regulatory multiprotein assemblies. Protein–protein interfaces are widely recognized to be challenging targets as they tend to be large and relatively flat, and therefore usually do not have the concave binding sites that characterize the so-called ‘druggable genome’. One such prototypic multiprotein target is the Notch transcription complex, where an extensive network of protein–protein interactions stabilize the ternary complex comprising the ankyrin domain, CSL (CBF1/suppressor of Hairless/Lag-1) and MAML (Mastermind-like). Enhanced Notch activity is implicated in the development of T-ALL (T-cell acute lymphoblastic leukaemia) and selective inhibitors of Notch would be useful cancer medicines. In the present paper, we describe a fragment-based approach to explore the druggability of the ankyrin domain. Using biophysical methods and X-ray crystal structure analyses, we demonstrate that molecules can bind to the surface of the ankyrin domain at the interface region with CSL and MAML. We show that they probably represent starting points for designing larger compounds that can inhibit important protein–protein interactions that stabilize the Notch complex. Given the relatively featureless topography of the ankyrin domain, this unexpected development should encourage others to explore the druggability of such challenging multiprotein systems using fragment-based approaches.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3