Biosynthesis of heparin/heparan sulphate: mechanism of epimerization of glucuronyl C-5

Author:

HAGNER-MCWHIRTER Åsa1,LINDAHL Ulf1,LI Jin-ping

Affiliation:

1. Department of Medical Biochemistry and Microbiology, Section for Medical Biochemistry, University of Uppsala, Biomedical Center, Box 582, SE-751 23 Uppsala, Sweden

Abstract

In the biosynthesis of heparin and heparan sulphate, D-glucuronic acid residues are converted into L-iduronic acid (IdoA) units by C-5 epimerization, at the polymer level. The reaction catalysed by the epimerase occurs by reversible abstraction and readdition of a proton at C-5 of target hexuronic acid residues, through a carbanion intermediate, with or without an inversion of configuration at C-5 [Prihar, Campbell, Feingold, Jacobsson, Jensen, Lindahl and Rodén (1980) Biochemistry 19, 495-500]. Incubation of chemically N-sulphated capsular polysaccharide from Escherichia coli K5 ([4GlcAβ1-4GlcNSO3α1-]n), or of O-desulphated heparin (predominantly [4IdoAα1-4GlcNSO3α1-]n) with purified C-5 epimerase from bovine liver, resulted in the interconversion of glucuronic acid and IdoA residues, which reached equilibrium (30-40% IdoA/total hexuronic acid) after approx. 1 h of incubation. Similar incubations performed in the presence of 3H2O resulted in progressive labelling at C-5 of the target hexuronic acid units of either substrate polysaccharide. Contrary to chemical D-gluco/L-ido equilibrium, established within 1 h of incubation, the accumulation of 3H label continued for at least 6 h. This isotope effect suggests that the second stage of the reaction, i.e. the re-addition of a proton to the carbanion intermediate, is the rate-limiting step of the overall process. Analysis of the 5-3H-labelled polysaccharide products showed that the 3H was approximately equally distributed between glucuronic acid and IdoA units, irrespective of incubation time (from 15 min to 72 h) and of the relative proportions of the two epimers in the substrate. This finding points to a catalytic mechanism in which the abstraction and re-addition of C-5 protons are effected by two polyprotic bases, presumably lysine residues. Previous experiments relating to the biosynthesis of dermatan sulphate were similarly interpreted in terms of a two-base epimerization mechanism but differed from the present findings by implicating one monoprotic and one polyprotic base function [Hannesson, Hagner-McWhirter, Tiedemann, Lindahl and Malmström (1996) Biochem. J. 313, 589-596].

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3