Cytochrome c-551 and azurin oxidation catalysed by Pseudomonas aeruginosa cytochrome oxidase. A steady-state kinetic study

Author:

Tordi M G,Silvestrini M C,Colosimo A,Tuttobello L,Brunori M

Abstract

The kinetics of oxidation of azurin and cytochrome c-551 catalysed by Pseudomonas aeruginosa cytochrome oxidase were re-investigated, and the steady-state parameters were evaluated by parametric and non-parametric methods. At low concentrations of substrates (e.g. less than or equal to 50 microM) the values obtained for Km and catalytic-centre activity are respectively 15 +/- 3 microM and 77 +/- 6 min-1 for azurin and 2.15 +/- 0.23 microM and 66 +/- 2 min-1 for cytochrome c-551, in general accord with previous reports assigning to cytochrome c-551 the higher affinity for the enzyme and to azurin a slightly higher catalytic rate. However, when the cytochrome c-551 concentration was extended well beyond the value of Km, the initial velocity increased, and eventually almost doubled at a substrate concentration greater than or equal to 100 microM. This result suggests a ‘half-hearted’ behaviour, since at relatively low cytochrome c-551 concentrations only one of the two identical binding sites of the dimeric enzyme seems to be catalytically active, possibly because of unfavourable interactions influencing the stability of the Michaelis-Menten complex at the second site. When reduced azurin and cytochrome c-551 are simultaneously exposed to Ps. aeruginosa cytochrome oxidase, the observed steady-state oxidation kinetics are complex, as expected in view of the rapid electron transfer between cytochrome c-551 and azurin in the free state. In spite of this complexity, it seems likely that a mechanism involving a simple competition between the two substrates for the same active site on the enzyme is operative. Addition of a chemically modified and redox inactive form of azurin (Hg-azurin) had no effect on the initial rate of oxidation of either azurin and cytochrome c-551, but clearly altered the time course of the overall process by removing, at least partially, the product inhibition. The results lead to the following conclusions: (i) reduced azurin and cytochrome c-551 bind at the same site on the enzyme, and thus compete; (ii) Hg-azurin binds at a regulatory site, competing with the product rather than the substrate; (iii) the two binding sites on the dimeric enzyme, though intrinsically equivalent, display unfavourable interactions. Since water is the product of the reduction of oxygen, point (iii) has important implications for the reaction mechanism.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cytochromec551;Encyclopedia of Inorganic and Bioinorganic Chemistry;2011-12-15

2. Cytochromecd1Nitrite Reductase;Encyclopedia of Inorganic and Bioinorganic Chemistry;2011-12-15

3. Coupling of Protonation, Reduction, and Conformational Change in azurin from Pseudomonas aeruginosa Investigated with Free Energy Measures of Cooperativity;The Journal of Physical Chemistry B;2011-08-05

4. Critical role of His369 in the reactivity of Pseudomonas aeruginosa cytochrome cd1nitrite reductase with oxygen;FEBS Journal;2006-10

5. Cytochromecd1Nitrite Reductase;Handbook of Metalloproteins;2006-04-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3