Killing tumours by ceramide-induced apoptosis: a critique of available drugs

Author:

RADIN Norman S.1

Affiliation:

1. Mental Health Research Institute, University of Michigan, Ann Arbor, MI, U.S.A.

Abstract

Over 1000 research papers have described the production of programmed cell death (apoptosis) by interventions that elevate the cell content of ceramide (Cer). Other interventions, which lower cellular Cer, have been found to interfere with apoptosis induced by other agents. Some studies have shown that slowing the formation of proliferation-stimulating sphingolipids also induces apoptosis. These relationships are due to the two different aspects of Cer: Cer itself produces apoptosis, but metabolic conversion of Cer into either sphingosine 1-phosphate or glucosphingolipids leads to cell proliferation. The balance between these two aspects is missing in cancer cells, and yet intervention by stimulating or blocking only one or two of the pathways in Cer metabolism is very likely to fail. This results from two properties of cancer cells: their high mutation rate and the preferential survival of the most malignant cells. Tumours treated with only one or two drugs that elevate Cer can adjust the uncontrolled processes to either maintain or to ‘aggravate’ the excessive growth, angiogenesis and metastasis characteristics of tumours. These treatments might simply elevate the production of growth factors, receptors and other substances that reduce the effectiveness of Cer. Tumour cells that do not adapt in this way undergo apoptosis, leaving the adapted cells free to grow and, ultimately, to ‘subdue’ their host. Thus it is important to kill every type of cancer cell present in the tumour rapidly and simultaneously, using as many different agents to control as many pathways as possible. To aid this approach, this article catalogues many of the drugs that act on different aspects of Cer metabolism. The techniques described here may lead to the development of practical chemotherapy for cancer and other diseases of excess proliferation.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3