Structural analysis of xylanase inhibitor protein I (XIP-I), a proteinaceous xylanase inhibitor from wheat (Triticum aestivum, var. Soisson)

Author:

PAYAN Françoise1,FLATMAN Ruth2,PORCIERO Sophie1,WILLIAMSON Gary2,JUGE Nathalie23,ROUSSEL Alain1

Affiliation:

1. Architecture et Fonction des Macromolécules Biologiques, UMR6098, CNRS and Universities Aix-Marseille I and II, 31 chemin Joseph Aiguier, F-13402 Marseille, France

2. Institute of Food Research (IFR), Colney Lane, Norwich NR4 7UA, U.K.

3. Institut Méditerranéen de Recherche en Nutrition, UMR INRA 1111, Faculté des Sciences et Techniques de St Jérôme, avenue Escadrille Normandie Niemen, F-13397 Marseille, France

Abstract

A novel class of proteinaceous inhibitors exhibiting specificity towards microbial xylanases has recently been discovered in cereals. The three-dimensional structure of xylanase inhibitor protein I (XIP-I) from wheat (Triticum aestivum, var. Soisson) was determined by X-ray crystallography at 1.8 Å (1 Å=0.1 nm) resolution. The inhibitor possesses a (β/α)8 barrel fold and has structural features typical of glycoside hydrolase family 18, namely two consensus regions, approximately corresponding to the third and fourth barrel strands, and two non-proline cis-peptide bonds, Ser36–Phe and Trp256–Asp (in XIP-I numbering). However, detailed structural analysis of XIP-I revealed several differences in the region homologous with the active site of chitinases. The catalytic glutamic acid residue of family 18 chitinases [Glu127 in hevamine, a chitinase/lysozyme from the rubber tree (Hevea brasiliensis)] is conserved in the structure of the inhibitor (Glu128), but its side chain is fully engaged in salt bridges with two neighbouring arginine residues. Gly81, located in subsite −1 of hevamine, where the reaction intermediate is formed, is replaced by Tyr80 in XIP-I. The tyrosine side chain fills the subsite area and makes a strong hydrogen bond with the side chain of Glu190 located at the opposite side of the cleft, preventing access of the substrate to the catalytic glutamic acid. The structural differences in the inhibitor cleft structure probably account for the lack of activity of XIP-I towards chitin.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3