Functional effects of APS and SH2-B on insulin receptor signalling

Author:

Ahmed Z.1,Pillay T. S.1

Affiliation:

1. Molecular Endocrinology Group, Institute of Cell Signalling and School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH, U.K.

Abstract

APS [for ‘adapter protein with a pleckstrin homology (PH) and Src homology 2 (SH2) domain’] belongs to a family of adapter proteins involved in signalling by the receptors for insulin, insulin-like growth factor 1, platelet-derived growth factor and nerve growth factor. Other members include alternatively spliced SH2-B isoforms (SH2Bα. SH2-Byβ and SH2-Bγ) and Lnk. These have a C-terminal SH2 domain, a central PH domain and an N-terminal proline-rich region. SH2Bα, APS and Lnk have a conserved C-terminal tyrosine phosphorylation site, whereas the alternatively spliced SH2-Bβ and SH2-Bγ have distinct C-termini. There is considerable sequence similarity between APS, SH2-B and Lnk, particularly in the SH2 domain. Both APS and SH2-Bα interact with the insulin-receptor activation loop phosphorylation sites and undergo insulin-stimulated tyrosine phosphorylation, although the phosphorylation of SH2-B is considerably weaker. APS couples c-Cbl to the insulin receptor, resulting in ubiquitination of the insulin receptor. We established cell lines [Chinese hamster ovary (CHO). T-APS and CHO. T-SH2-B cells] overexpressing APS and SH2-Bα to study their roles in insulin receptor signalling. Either adapter protein enhances insulin receptor and ERK (extracellular-signal-regulated kinase) phosphorylation. In CHO. T-APS cells, Akt phosphorylation is observed earlier than in CHO.T-SH2-B cells. Both enhance insulin-stimulated Akt activation but APS seems to cause greater activation. Thus APS and SH2-B have similar effects on insulin receptor signalling, although the effects of SH2-B are independent of its phosphorylation.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3