Kinetic studies on the broad-specificity β-d-glucosidase from pig kidney

Author:

Pócsi I1,Kiss L1

Affiliation:

1. Institute of Biochemistry, Lajos Kossuth University, H-4010 Debrecen, Hungary.

Abstract

A broad-specificity beta-D-glucosidase from pig kidney cortex was isolated and purified to homogeneity by a rapid purification procedure. The pI (5.14 +/- 0.05), Mr (59,000 +/- 2000) and specific activities with several p-nitrophenyl glycosides (galactopyranoside, glucopyranoside, arabinopyranoside, xylopyranoside) were comparable with those published previously for cytoplasmic beta-D-glucosidase from other sources and organs. Mixed-substrate experiments and inhibition studies with glucono-(1----5)-lactone revealed that a single active centre, containing one catalytic site and one saccharide-binding site, was responsible for the splitting of all four synthetic substrates. Inhibition experiments with substrate analogues demonstrated that (i) the major binding determinant of the glycosides was the aglycone moiety, (ii) an anionic side chain of the enzyme (probably a carboxy group) interacted with the glycosidic linkages and (iii) the properties of the aglycone significantly influenced the binding of the carbohydrate moiety. The inhibition constants of the p-nitrothiophenyl derivatives were in good agreement with the Km values of the corresponding substrates. Therefore the Michaelis constants could be regarded as true equilibrium constants (Ks). The ‘three-point-attachment model’ of the substrate splitting, proposed by Daniels [(1983) Ph.D. Dissertation, University of Pittsburgh] for the analogous liver enzyme, was applicable for beta-D-glucosidase from pig kidney too. The possible nature of the ‘attachments’ is discussed.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3