Origin of hepatic very-low-density lipoprotein triacylglycerol: the contribution of cellular phospholipid

Author:

WIGGINS David1,GIBBONS Geoffrey F.2

Affiliation:

1. 1Oxford Lipid Metabolism Group, Metabolic Research Laboratory, Nuffield Department of Clinical Medicine, University of Oxford, Radcliffe Infirmary, Woodstock Road, Oxford OX2 6HE, U.K.

2. 2Oxford Lipid Metabolism Group, Metabolic Research Laboratory, Nuffield Department of Clinical Medicine, University of Oxford, Radcliffe Infirmary, Woodstock Road, Oxford OX2 6HE, U.K.

Abstract

When rat hepatocytes were cultured for 24 h in the absence of exogenous fatty acid, the amount of very-low-density lipoprotein (VLDL) triacylglycerol (TAG) secreted (114±14 µg/mg of cell protein) could not be accounted for by the mass of TAG lost from the cells (29±6.1 µg/mg of cell protein) during this period (n = 12). Of the balance (85±14 µg/mg; 94±15 nmol/mg), a maximum of only 37 nmol/mg of cell protein of TAG could be accounted for by fatty acids synthesized de novo. When labelled exogenous oleate (initial concentration, 0.75 mM) was present in the culture medium, the net gain in cellular plus VLDL TAG (253±38 µg/mg of cell protein per 24 h) was greater than that contributed by the exogenous fatty acid (155±18.2 µg/mg of cell protein, n = 5). Again, the balance (98.8±18.2 µg/mg of cell protein per 24 h) was too great to be accounted for by fatty acid synthesis de novo. In experiments in which cellular glycerolipids were prelabelled with [9,10(n)-3H]oleic acid, following removal of the labelled fatty acid, there was a net increase in labelled cellular plus VLDL TAG over the next 24 h. That cellular phospholipids are the source of a substantial part of the excess TAG synthesized is supported by the following evidence. (1) The loss of prelabelled cellular phospholipid during culture was greater than could be accounted for by secretion into the medium. (2) During culture of cells prelabelled with 1,2-di-[1-14C]palmitoyl phosphatidylcholine, a substantial amount of label was secreted as VLDL TAG. (3) In pulse–chase experiments, the kinetics of labelled phospholipid turnover were consistent with conversion into a non-phospholipid pool. The enzymology involved in the transfer of phospholipid fatty acids into TAG is probably complex, but the present results suggest that this pathway may represent an important route by which extracellular fatty acids are channelled into VLDL TAG.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3