Acetate stimulates flux through the tricarboxylic acid cycle in rabbit renal proximal tubules synthesizing glutamine from alanine: a 13C NMR study

Author:

DUGELAY Sylvie1,CHAUVIN Marie-France1,MEGNIN-CHANET Frédérique2,MARTIN Guy1,LARÉAL Marie-Catherine1,LHOSTE Jean-Marc2,BAVEREL Gabriel1

Affiliation:

1. Centre d'Études Métaboliques par Spectroscopie de Résonance Magnétique (INSERM U499), Pavillon P, Hôpital Edouard Herriot, place d'Arsonval, 69374 Lyon Cedex 03, France

2. Unité de Biophysique Moléculaire (INSERM U350), Institut Curie, Centre Universitaire, Bâtiment 112, 91405 Orsay Cedex, France

Abstract

Although glutamine synthesis has a major role in the control of acid-base balance and ammonia detoxification in the kidney of herbivorous species, very little is known about the regulation of this process. We therefore studied the influence of acetate, which is readily metabolized by the kidney and whose metabolism is accompanied by the production of bicarbonate, on glutamine synthesis from variously labelled [13C]alanine and [14C]alanine molecules in isolated rabbit renal proximal tubules. With alanine as sole exogenous substrate, glutamine and, to a smaller extent, glutamate and CO2, were the only significant products of the metabolism of this amino acid, which was removed at high rates. Absolute fluxes through the enzymes involved in alanine conversion into glutamine were assessed by using a novel model describing the corresponding reactions in conjunction with the 13C NMR, and to a smaller extent, the radioactive and enzymic data. The presence of acetate (5 mM) led to a large stimulation of fluxes through citrate synthase and α-oxoglutarate dehydrogenase. These effects were accompanied by increases in the removal of alanine, in the accumulation of glutamate and in flux through the anaplerotic enzyme pyruvate carboxylase. Acetate did not alter fluxes through glutamate dehydrogenase and glutamine synthetase; as a result, acetate did not change the accumulation of ammonia, which was negligible under both experimental conditions. We conclude that acetate, which seems to be an important energy-provider to the rabbit renal proximal tubule, simultaneously traps as glutamate the extra nitrogen removed as alanine, thus preventing the release of additional ammonia by the glutamate dehydrogenase reaction.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3