Affiliation:
1. The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
Abstract
IL-17 (interleukin-17), a hallmark cytokine of Th17 (T-helper 17) cells, plays critical roles in host defence against bacterial and fungal infections, as well as in the pathogenesis of autoimmune diseases. The present review focuses on current knowledge of the regulation, functional mechanisms and targeting strategies of IL-17 in the context of inflammatory autoimmune diseases. Evidence shows that IL-17 is highly up-regulated at sites of inflammatory tissues of autoimmune diseases and amplifies the inflammation through synergy with other cytokines, such as TNF (tumour necrosis factor) α. Although IL-17 was originally thought to be produced mainly by Th17 cells, a newly defined T-cell subset with a specific differentiation programme and tight regulation, several other cell types (especially innate immune cells) are also found as important sources for IL-17 production. Although IL-17 activates common downstream signalling, including NF-κB (nuclear factor κB), MAPKs (mitogen-activated protein kinases), C/EBPs (CCAAT/enhancer-binding proteins) and mRNA stability, the immediate receptor signalling has been shown to be quite unique and tightly regulated. Mouse genetic studies have demonstrated a critical role for IL-17 in the pathogenesis of variety of inflammatory autoimmune diseases, such as RA (rheumatoid arthritis) and MS (multiple sclerosis). Importantly, promising results have been shown in initial clinical trials of monoclonal antibodies against IL-17 or its receptor (IL-17R) to block IL-17-mediated function in treating autoimmune patients with psoriasis, RA and MS. Therefore targeting IL-17/IL-17R, IL-17-producing pathways or IL-17-mediated signalling pathways can be considered for future therapy in autoimmune diseases.
Reference280 articles.
1. CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene;Rouvier;J. Immunol.,1993
2. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor;Yao;Immunity,1995
3. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines;Fossiez;J. Exp. Med.,1996
4. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties;Mosmann;Annu. Rev. Immunol.,1989
5. Interferon-γ confers resistance to experimental allergic encephalomyelitis;Krakowski;Eur. J. Immunol.,1996
Cited by
224 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献