Affiliation:
1. Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, U.S.A.
Abstract
Tyrosine nitration is a covalent post-translational protein modification associated with various diseases related to oxidative/nitrative stress. A role for nitration of tyrosine in protein inactivation has been proposed; however, few studies have established a direct link between this modification and loss of protein function. In the present study, we determined the effect of nitration of Tyr345 and Tyr368 in the β-subunit of the F1-ATPase using site-directed mutagenesis. Nitration of the β-subunit, achieved by using TNM (tetranitromethane), resulted in 66% ATPase activity loss. This treatment resulted in the modification of several asparagine, methionine and tyrosine residues. However, nitrated tyrosine and ATPase inactivation were decreased in reconstituted F1 with Y368F (54%), Y345F (28%) and Y345,368F (1%) β-subunits, indicating a clear link between nitration at these positions and activity loss, regardless of the presence of other modifications. Kinetic studies indicated that an F1 with one nitrated tyrosine residue (Tyr345 or Tyr368) or two Tyr368 residues was sufficient to grant inactivation. Tyr368 was four times more reactive to nitration due to its lower pKa. Inactivation was attributed mainly to steric hindrance caused by adding a bulky residue more than the presence of a charged group or change in the phenolic pKa due to the introduction of a nitro group. Nitration at this residue would be more relevant under conditions of low nitrative stress. Conversely, at high nitrative stress conditions, both tyrosine residues would contribute equally to ATPase inactivation.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献