Nitration of tyrosine residues 368 and 345 in the β-subunit elicits FoF1-ATPase activity loss

Author:

Fujisawa Yasuko1,Kato Kazunobu1,Giulivi Cecilia1

Affiliation:

1. Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, U.S.A.

Abstract

Tyrosine nitration is a covalent post-translational protein modification associated with various diseases related to oxidative/nitrative stress. A role for nitration of tyrosine in protein inactivation has been proposed; however, few studies have established a direct link between this modification and loss of protein function. In the present study, we determined the effect of nitration of Tyr345 and Tyr368 in the β-subunit of the F1-ATPase using site-directed mutagenesis. Nitration of the β-subunit, achieved by using TNM (tetranitromethane), resulted in 66% ATPase activity loss. This treatment resulted in the modification of several asparagine, methionine and tyrosine residues. However, nitrated tyrosine and ATPase inactivation were decreased in reconstituted F1 with Y368F (54%), Y345F (28%) and Y345,368F (1%) β-subunits, indicating a clear link between nitration at these positions and activity loss, regardless of the presence of other modifications. Kinetic studies indicated that an F1 with one nitrated tyrosine residue (Tyr345 or Tyr368) or two Tyr368 residues was sufficient to grant inactivation. Tyr368 was four times more reactive to nitration due to its lower pKa. Inactivation was attributed mainly to steric hindrance caused by adding a bulky residue more than the presence of a charged group or change in the phenolic pKa due to the introduction of a nitro group. Nitration at this residue would be more relevant under conditions of low nitrative stress. Conversely, at high nitrative stress conditions, both tyrosine residues would contribute equally to ATPase inactivation.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3