Influence of intramolecular cross-links on the molecular, structural and functional properties of PEGylated haemoglobin

Author:

Hu Tao1,Manjula Belur N.1,Li Dongxia1,Brenowitz Michael2,Acharya Seetharama A.13

Affiliation:

1. Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, U.S.A.

2. Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, U.S.A.

3. Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, U.S.A.

Abstract

The influence of intramolecular cross-links on the molecular, structural and functional properties of PEGylated {PEG [poly(ethylene glycol)]-conjugated} haemoglobin has been investigated. The sites and the extent of PEGylation of haemoglobin by reductive alkylation are not influenced by the presence of an αα-fumaryl cross-link at Lys-99(α). The propylated hexaPEGylated cross-linked haemoglobin, (propyl-PEG5K)6-αα-Hb, exhibits a larger molecular radius and lower colloidal osmotic pressure than propylated hexaPEGylated non-cross-linked haemoglobin, (propyl-PEG5K)6-Hb. Perturbation of the haem microenvironment and the α1β2 interface by PEGylation of haemoglobin is reduced by intramolecular cross-linking. Sedimentation velocity analysis established that PEGylation destabilizes the tetrameric structure of haemoglobin. (Propyl-PEG5K)6-Hb and (propyl-PEG5K)6-αα-Hb sediment as stable dimeric and tetrameric molecules, respectively. The ββ-succinimidophenyl PEG-2000 cross-link at Cys-93(β) outside the central cavity also influences the molecular properties of haemoglobin, comparable to that by the αα-fumaryl cross-link within the central cavity. However, the influence of the two cross-links on the oxygen affinity of PEGylated haemoglobin are very distinct, indicating that the high oxygen affinity of PEGylated haemoglobin is not a direct consequence of the dissociation of the haemoglobin tetramers into dimers. αα-Fumaryl cross-linking is preferred to modulate both oxygen affinity and molecular properties of PEGylated haemoglobin, and cross-linking outside the central cavity could only modulate molecular properties of PEGylated haemoglobin. It is suggested that PEGylation induces a hydrodynamic drag on haemoglobin and this plays a role in the microcirculatory properties of PEGylated haemoglobin.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3