Metabolism of macromolecular heparin in mouse neoplastic mast cells

Author:

Ögren S1,Lindahl U2

Affiliation:

1. Institute of Medical Chemistry, University of Uppsala

2. Department of Medical Chemistry, Royal Veterinary College, The Biomedical Centre, S-751 23 Uppsala, Sweden

Abstract

1. Polysaccharide in a heparin-producing mouse mastocytoma was pulse-labelled in vivo with [35S] sulphate, and after various periods of time was isolated from subcellular fractions. Such fractions were recovered from tissue homogenates by consecutive centrifugations at 1000g for 10min, 20000g for 20min and 100000g for 1h. Initially the 35S-labelled polysaccharide formed occurred principally in the second centrifugal fraction (20000g precipitate), with small amounts in the first (granular) and third (microsomal) fractions. Analysis for glycosyltransferase activity confirmed that glycosaminoglycans were formed chiefly in particles sedimenting at 20000g. Molecules of this newly synthesized polysaccharide were considerably larger than those of commercially available heparin, as judged from gel chromatography. 2. Within the first hour after injection of [35S]sulphate, most of the labelled polysaccharide was redistributed from the second to the first centrifugal fraction. During, and possibly also after, this shift, the macromolecular polysaccharide was degraded, ultimately to the size of commercial heparin. The degradation process appeared complete 6h after injection of [35S]sulphate. 3. Particulate subcellular fractions were incubated with macromolecular [35S]heparin and the products were analysed by gel chromatography. Significant degradation of the substrate occurred only with the second centrifugal fraction. Further characterization of this fraction, by density-gradient centrifugation in iso-osmotic colloidal silica, revealed a single visible band of particles, at approximately the same density at lysosomes. This band contained all the β-glucuronidase, 35S-labelled endogenous polysacchride and heparin-degrading enzyme present in the second fraction.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Molecular Aspects of Heparanase Interaction with Heparan Sulfate, Heparin and Glycol Split Heparin;Advances in Experimental Medicine and Biology;2020

2. Heparanase – Discovery and Targets;Advances in Experimental Medicine and Biology;2020

3. Pathophysiology of heparan sulphate: many diseases, few drugs;Journal of Internal Medicine;2013-03-12

4. Antithrombin–Heparin Complexes;Polymeric Biomaterials;2013-01-17

5. Improving Blood Compatibility of Biomaterials Using a Novel Antithrombin–Heparin Covalent Complex;Biomaterials Fabrication and Processing Handbook;2008-03-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3