Affiliation:
1. Department of Biological Sciences and Center for Colon Cancer Research, University of South Carolina, Columbia, SC 29208, U.S.A.
Abstract
Human thymidylate synthase (hTS; EC 2.1.1.45) is one of a small group of proteasomal substrates whose intracellular degradation occurs in a ubiquitin-independent manner. Previous studies have shown that proteolytic breakdown of the hTS polypeptide is directed by an intrinsically disordered 27-residue domain at the N-terminal end of the molecule. This domain, in co-operation with an α-helix spanning amino acids 31–45, functions as a degron, in that it has the ability to destabilize a heterologous polypeptide to which it is attached. In the present study, we provide evidence indicating that it is the 26S isoform of the proteasome that is responsible for intracellular degradation of the hTS polypeptide. In addition, we have used targeted in vitro mutagenesis to show that an Arg–Arg motif at residues 10–11 is required for proteolysis, an observation that was confirmed by functional analysis of the TS N-terminus from other mammalian species. The effects of stabilizing mutations on hTS degradation are maintained when the enzyme is provided with an alternative means of proteasome association; thus such mutations perturb one or more post-docking steps in the degradation pathway. Surprisingly, deletion mutants missing large segments of the disordered domain still function as proteasomal substrates; however, degradation of such mutants occurs by a mechanism that is distinct from that for the wild-type protein. Taken together, our results provide information on the roles of specific subregions within the intrinsically disordered N-terminal domain of hTS in regulation of degradation, leading to a deeper understanding of mechanisms underlying the ubiquitin-independent proteasomal degradation pathway.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献