Affiliation:
1. Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, U.K.
Abstract
The activity of key metabolic enzymes is regulated by the ubiquitin ligases that control the function of the cyclins; therefore the activity of these ubiquitin ligases explains the coordination of cell-cycle progression with the supply of substrates necessary for cell duplication. APC/C (anaphase-promoting complex/cyclosome)-Cdh1, the ubiquitin ligase that controls G1- to S-phase transition by targeting specific degradation motifs in cell-cycle proteins, also regulates the glycolysis-promoting enzyme PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isoform 3) and GLS1 (glutaminase 1), a critical enzyme in glutaminolysis. A decrease in the activity of APC/C-Cdh1 in mid-to-late G1 releases both proteins, thus explaining the simultaneous increase in the utilization of glucose and glutamine during cell proliferation. This occurs at a time consistent with the point in G1 that has been described as the nutrient-sensitive restriction point and is responsible for the transition from G1 to S. PFKFB3 is also a substrate at the onset of S-phase for the ubiquitin ligase SCF (Skp1/cullin/F-box)-β-TrCP (β-transducin repeat-containing protein), so that the activity of PFKFB3 is short-lasting, coinciding with a peak in glycolysis in mid-to-late G1, whereas the activity of GLS1 remains high throughout S-phase. The differential regulation of the activity of these proteins indicates that a finely-tuned set of mechanisms is activated to fulfil specific metabolic demands at different stages of the cell cycle. These findings have implications for the understanding of cell proliferation in general and, in particular, of cancer, its prevention and treatment.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献