Microbial degradation of hydrocarbons. Catabolism of 1-phenylalkanes by Nocardia salmonicolor

Author:

Sariaslani F. Sima1,Harper David B.1,Higgins I. John1

Affiliation:

1. Biological Laboratory, University of Kent, Canterbury, Kent, U.K.

Abstract

1. Nocardia salmonicolor grew on a variety of alkanes, 1-phenylalkanes and 1-cyclo-hexylalkanes as sole carbon and energy sources. 2. Growth on 1-phenyldodecane in batch culture was diauxic. Isocitrate lyase activity was induced during lag phase, reaching a maximum activity in the first growth phase, during which both the aromatic ring and the side chain were degraded. However, 4-phenylbutyrate, 4-phenylbut-3-enoate, 4-phenylbut-2-enoate, 3-phenylpropionate, cinnamate and phenylacetate accumulated in the growth medium. These compounds disappeared at the onset of diauxic lag and four hydroxylated compounds accumulated; one was 4-(o-hydroxyphenyl)but-3-enoate and another was identified as 4-(o-hydroxyphenyl)butyrate. These compounds were utilized during the second growth phase. 3. Washed 1-phenyldodecane-grown cells oxidized acetate, cinnamate, 3,4-dihydroxyphenylacetate, homogentisate, o-, m- and p-hydroxyphenylacetate, phenylacetate, and 4-phenylbutyrate rapidly without lag. 4. Extracts of such cells rapidly oxidized homogentisate,3,4-dihydroxyphenylacetate, catechol and protocatechuate. 5. The organism grew readily on 4-phenylbutyrate, phenylacetate, o-hydroxyphenylacetate, homogentisate and 3,4-dihydroxyphenylacetate as sole carbon energy sources, but growth was slow on cinnamate and 4-phenylbut-3-enoate. 6. When cinnamate and phenylacetate were sole carbon sources for growth, phenylacetate and o-hydroxyphenylacetate respectively were detected in culture supernatants. 4-Phenylbut-3-enoate and 4-phenylbutyrate both yielded a mixture of cinnamate and phenylacetate. 7. It is proposed that 1-phenyldodecane is catabolized by ω-oxidation of the terminal methyl group, side-chain β-oxidation to 4-phenylbutyrate, both β- and α-oxidation to phenylacetic acid, hydroxylation to homogentisate via o-hydroxyphenylacetate and ring cleavage to maleylacetoacetate. Catabolism via 3,4-dihydroxyphenylacetate may also occur. 8. Growth on 1-phenylnonane was also diauxic and cinnamic acid, phenylpropionic acid, benzoic acid and hydroxyphenylpentanoic acid accumulated in the medium. Respirometric data and ring-cleavage enzyme activities showed similar patterns to those obtained after growth on 1-phenyldodecane. The results suggest that the main catabolic routes for 1-phenyldodecane and 1-phenylnonane may converge at cinnamate. 9. Possible reasons for diauxie are discussed.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3