Affiliation:
1. Division of Immunobiology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Herts. EN6 3QG, U.K.
Abstract
To investigate the mechanism underlying resistance to tumour necrosis factor-alpha (TNF alpha)-induced cytotoxicity, we have developed a human hybrid cell line, designated A10, derived from the fusion of human U-937 monocytoid cells and human monocytes, which expressed large numbers of TNF alpha receptors and yet remained highly resistant to TNF alpha. However, in the presence of the protein kinase C (PKC) inhibitors RO-31-7549 or RO-31-8220 (donated by Roche), these cells became sensitive to TNF alpha-induced cytotoxicity, suggesting that PKC activity is required for protective mechanisms. On investigation of protein phosphorylation in TNF alpha-stimulated permeabilized A10 cells, a rapid increase in serine/threonine phosphorylation of phosphoproteins of molecular masses 130, 90, 80, 65 and 42 kDa was found. Subsequently, we found a similar pattern of increased phosphorylation following stimulation of A10 cells with mezerein, a phorbol ester derivative which activates PKC, a serine/threonine kinase. The theory that activation of PKC was responsible for increased phosphorylation was confirmed by a dose-dependent inhibition of the TNF alpha-induced protein phosphorylation by the PKC inhibitors RO-31-7549 and RO-31-8220. The possible link between the TNF alpha-stimulated early protein phosphorylation events and the maintenance of protective mechanisms against TNF alpha-induced cytotoxicity is discussed.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献