Glutamine synthesis from glucose and ammonium chloride by guinea-pig kidney tubules

Author:

Michoudet C1,Chauvin M F1,Baverel G1

Affiliation:

1. Physiopathologie Métabolique et Renale et Spectroscopie RMN, CNRS E.P. 18, Faculté de Médecine Alexis Carrel, Lyon, France

Abstract

1. At a physiological concentration (5 mM), glucose was found to be metabolized by isolated kidney cortex tubules prepared from fed guinea pigs. 2. The release of 14CO2 from [U-14C]glucose indicated that oxidation of the glucose carbon skeleton represented about 50% of the glucose removed; significant amounts of lactate and glutamine also accumulated. 3. Addition of 0.1-10 mM NH4Cl led to a dose-dependent stimulation of glucose metabolism which was accompanied by a large increase in lactate and glutamine accumulation and, to a lesser extent, in glucose oxidation. 4. Comparison of the release of 14CO2 from [1-14C]- and [6-14C]glucose indicates that, in both the absence and the presence of NH4Cl, the pentose phosphate shunt was only a minor pathway of glucose metabolism. 5. The central role of pyruvate carboxylase in the conversion of glucose carbon into glutamine carbon was demonstrated by using a bicarbonate-free medium and measuring the fixation of 14CO2 from [14C]bicarbonate, which was recovered mostly at C-1 of glutamine plus glutamate. 6. The NH4Cl-induced stimulation of glucose removal was secondary not only to increased glutamine synthesis, as shown by the effect of methionine sulphoximine, an inhibitor of glutamine synthetase, but also to the stimulation of phosphofructokinase activity by NH4Cl. 7. Renal arterio-venous difference measurements revealed that, in vivo, the guinea-pig kidney removed glucose from the circulating blood, which suggests that glucose carbon may contribute to the carbon skeleton of the glutamine released by this organ.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3