The production of biologically active subparticles from rabbit reticulocyte ribosomes

Author:

Bonanou Sophia1,Cox R A1,Higginson Betty1,Kanagalingam K1

Affiliation:

1. National Institute for Medical Research, Mill Hill, London, N.W.7

Abstract

The effect of exposing rabbit reticulocyte ribosomes to concentrated solutions of potassium chloride was examined by: (a) dialysis against 0·5m-potassium chloride; (b) zone centrifugation through a sucrose gradient in 0·5m-potassium chloride; (c) differential centrifugation of a solution made 0·5m with respect to potassium chloride. The products of each treatment and their ability to support protein synthesis in a reticulocyte cell-free system, in the presence and in the absence of polyuridylic acid, were examined. The following results were found. (1) Exposing the polysomes to 0·5m-potassium chloride was not a sufficient condition for the complete dissociation of ribosomes into subparticles; the reaction showed a concentration-dependence, implying the existence of an equilibrium between the various ribosomal species. Disturbance of the equilibrium by removing certain products, as in zone centrifuging, can lead to complete dissociation. (2) The subparticles produced by dialysis or sucrose-gradient fractionation were biologically inactive and unstable. (3) The pellet obtained by differential centrifuging consisted of subparticles, if suspended in a Mg2+-free buffer; addition of Mg2+ converted about 30% of the material into heavier sedimenting species, and the preparation had 20–40% of the activity of the untreated control polysomes in the cell-free system. Addition of the 0·5m-potassium chloride supernatant fraction resulted in further apparent reconstitution of sub-particles into ribosomes and polysomes and in a 50–100% restoration of biological activity. When both polyuridylic acid and supernatant factors were present incorporations similar to or higher than those of the control were attained.

Publisher

Portland Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3