Identification of residues essential for a two-step reaction by malonyl-CoA synthetase from Rhizobium trifolii

Author:

AN Jae Hyung1,LEE Gha Young1,JUNG Jin-Won1,LEE Weontae1,KIM Yu Sam1

Affiliation:

1. Department of Biochemistry, College of Science, Bioproducts Research Centre, Yonsei University, Seoul 120-749, Korea

Abstract

Malonyl-CoA synthetase (MCS) catalyses the formation of malonyl-CoA in a two-step reaction consisting of the adenylation of malonate with ATP followed by malonyl transfer from malonyl-AMP to CoA. In order to identify amino acid residues essential for each step of the enzyme, catalysis based on chemical modification and database analysis, Arg-168, Lys-170, and His-206 were selected for site-directed mutagenesis. Glutathione-S-transferase-fused enzyme (GST-MCS) was constructed and mutagenized to make R168G, K170M, R168G/K170M and H206L mutants, respectively. The MCS activity of soluble form GST-MCS was the same as that of wild-type MCS. Circular dichroism spectra for the four mutant enzymes were nearly identical to that for the GST-MCS, indicating that Arg-168, Lys-170 and His-206 are not important for conformation but presumably for substrate binding and/or catalysis. HPLC analysis of products revealed that the intermediate malonyl-AMP is not accumulated during MCS catalysis and that none of the mutant enzymes accumulated it either.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3