Regulation of coenzyme A biosynthesis by glucagon and glucocorticoid in adult rat liver parenchymal cells

Author:

Smith Colleen M.1,Savage C. Richard1

Affiliation:

1. Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A.

Abstract

We studied the effects of glucagon, dibutyryl cyclic AMP and dexamethasone on the rate of [14C]pantothenate conversion to CoA in adult rat liver parenchymal cells in primary culture. The presence of 30nm-glucagon increased the rate by about 1.5-fold relative to control cultures (range 1.4–2.3) and 2.4-fold relative to cultures containing 1–3m-i.u. of insulin/ml. The half-maximal effect was obtained at 3nm-glucagon. Dibutyryl cyclic AMP plus theophylline also enhanced the rate by about 1.5-fold. Dexamethasone acted synergistically with glucagon; glucagon at 0.3nm had no effect when added alone, but resulted in a 1.7-fold enhancement when added in the presence of dexamethasone (maximum effect at 50nm). The 1.4-fold enhancement caused by the addition of saturating glucagon concentrations was increased to a 3-fold overall enhancement by the addition of dexamethasone. However, dexamethasone added alone over the range 5nm to 5μm had no effect on the rate of [14C]pantothenate conversion to CoA. The stimulatory effect of dibutyryl cyclic AMP plus theophylline was also enhanced by the addition of dexamethasone. Changes in intracellular pantothenate concentration or radioactivity could not account for the stimulatory effects of glucagon, dibutyryl cyclic AMP or dexamethasone. Addition of 18μm-cycloheximide, an inhibitor of protein synthesis, decreased the rate of incorporation of [14C]pantothenate into CoA and the enhancement of this rate by glucagon and dibutyryl cyclic AMP plus theophylline in a reversible manner. These results demonstrate an influence of glucagon, dibutyryl cyclic AMP and glucocorticoids on the intracellular mechanism regulating total CoA concentrations in the liver.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3