Detection of ligand-induced perturbations affecting the biotinyl group of mammalian acetyl-coenzyme A carboxylase by using biotin-binding antibodies

Author:

Ahmad Fazal1,Ahmad Patricia M.1,Dickstein Ross1,Greenfield Ed1

Affiliation:

1. Papanicolaou Cancer Research Institute, 1155 N.W. 14th Street, P.O. Box 016188, Miami, FL 33101, U.S.A.

Abstract

Biotin-binding antibodies were raised in rabbits by injecting biotin–bovine serum albumin conjugate. Neither the protomer nor the polymer of rat mammary-gland acetyl-CoA carboxylase formed precipitin bands with the anti-biotin. By virtue of its ability to bind biotin (apparent binding constant for free biotin about 1μm), the anti-biotin inhibited the carboxylase activity under certain conditions. This property of the antibody was employed to detect the ligand-induced changes affecting the biotinyl group in different conformational states of mammalian carboxylase. Depending on the ligand present, the biotinyl group in the protomeric form was either accessible or inaccessible to the antibody. The biotinyl group of the protomer generated by a relatively high concentration of NaCl (0.5m) reacted with the antibody, and the antibody–carboxylase complex could not be converted into active enzyme by citrate. Further experiments showed that citrate failed to induce polymerization in this protomer–antibody complex and that anti-biotin could be displaced rapidly from this complex with excess of biotin. The resulting protomer was converted into the polymeric state on citrate addition, with parallel regain of enzyme activity. In the presence of ADP+Mg2+, ATP+Mg2+ or ATP+Mg2++HCO3−, however, the enzyme remained as a protomer, but its configuration was such that the biotinyl group was essentially inaccessible to the antibody. Likewise, the biotinyl group of the different polymeric forms of the carboxylase (s∼30–45S) engendered by phosphate, malonyl-CoA, acetyl-CoA or citrate remained essentially inaccessible, since their activity was minimally affected by the anti-biotin. In the presence of 0.15m-NaCl, the phosphate-induced polymer reverted to a ∼19S form with concomitant appearance of anti-biotin-sensitivity, whereas the other polymeric forms remained unaffected under similar experimental conditions.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3