Prolyl hydroxylases as regulators of cell metabolism

Author:

Boulahbel Houda1,Durán Raúl V.1,Gottlieb Eyal1

Affiliation:

1. Apoptosis and Tumour Metabolism Laboratory, Cancer Research UK, The Beatson Institute for Cancer Research, Switchback Road, Glasgow G61 1BD, U.K.

Abstract

Cellular response to oxygen depletion is mediated by HIF (hypoxia-inducible factor). HIF is a heterodimer consisting of a constitutively expressed subunit (HIFβ) and an oxygen-regulated subunit (HIFα). HIFα stability is regulated by prolyl hydroxylation by PHD (prolyl hydroxylase domain-containing protein) family members. PHD activity depends on the availability of molecular oxygen, making PHDs the oxygen-sensing system in animal cells. However, PHDs have recently been shown to respond to stimuli other than oxygen, such as 2-oxoglutarate (α-ketoglutarate), succinate or fumarate, as illustrated by the pseudo-hypoxic response in succinate dehydrogenase- or fumarate dehydrogenase-deficient tumours. Moreover, HIFα is not the sole PHD effector, suggesting that PHDs have functions that extend beyond oxygen sensing. Currently, we are investigating the role of PHDs in the cellular response to amino acid deprivation, a process regulated by mTOR (mammalian target of rapamycin). The precise mechanism whereby amino acids are signalling to mTOR is not fully understood. Given that 2-oxoglutarate is a limiting co-substrate for PHD activity during normoxia and that 2-oxoglutarate levels depend on amino acid availability, it is possible that PHD activity depends not only on oxygen, but also on amino acid availability, suggesting a global metabolic sensor function for PHDs which could be signalling not only to HIF, but also to mTOR.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Reference32 articles.

1. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway;Kaelin;Mol. Cell,2008

2. Evaluation of HIF-1 inhibitors as anticancer agents;Semenza;Drug Discov. Today,2007

3. Overexpression of hypoxia-inducible factor 1α in common human cancers and their metastases;Zhong;Cancer Res.,1999

4. Oxygen sensing by HIF hydroxylases;Schofield;Nat. Rev. Mol. Cell Biol.,2004

5. Proline hydroxylation and gene expression;Kaelin;Annu. Rev. Biochem.,2005

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3