PKC isoenzymes differentially modulate the effect of thrombin on MAPK-dependent RPE proliferation

Author:

Palma-Nicolas Jose P.1,López Edith1,López-Colomé Ana María1

Affiliation:

1. Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-253, Ciudad Universitaria, C.P. 04510, México, D.F, Mexico

Abstract

Thrombin signalling through PAR (protease-activated receptor)-1 is involved in cellular processes, such as proliferation, differentiation and cell survival. Following traumatic injury to the eye, thrombin signalling may participate in disorders, such as PVR (proliferative vitreoretinopathy), a human eye disease characterized by the uncontrolled proliferation, transdifferentiation and migration of otherwise quiescent RPE (retinal pigment epithelium) cells. PARs activate the Ras/Raf/MEK/ERK MAPK pathway (where ERK is extracellular-signal-regulated kinase, MAPK is mitogen-activated protein kinase and MEK is MAPK/ERK kinase) through the activation of Gα and Gβγ heterotrimeric G-proteins, and the downstream stimulation of the PLC (phospholipase C)-β/PKC (protein kinase C) and PI3K (phosphoinositide 3-kinase) signalling axis. In the present study, we examined the molecular signalling involved in thrombin-induced RPE cell proliferation, using rat RPE cells in culture as a model system for PVR pathogenesis.  Our results showed that thrombin activation of PAR-1 induces RPE cell proliferation through Ras-independent activation of the Raf/MEK/ERK1/2 MAPK signalling cascade. Pharmacological analysis revealed that the activation of ‘conventional’ PKC isoforms is essential for proliferation, although thrombin-induced phosphorylation of ERK1/2 requires the activation of atypical PKCζ by PI3K. Consistently, thrombin-induced ERK1/2 activation and RPE cell proliferation were prevented completely by PI3K or PKCζ inhibition. These results suggest that thrombin induces RPE cell proliferation by joint activation of PLC-dependent and atypical PKC isoforms and the Ras-independent downstream stimulation of the Raf/MEK/ERK1/2 MAPK cascade. The present study is the first report demonstrating directly thrombin-induced ERK phosphorylation in the RPE, and the involvement of atypical PKCζ in this process.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

Reference71 articles.

1. Stimulation of inositol phosphate formation in cultured human retinal pigment epithelium;Crook;Brain Res.,1992

2. Thrombin increases expression of urokinase receptor by activation of the thrombin receptor;Yang;Invest. Ophthalmol. Visual Sci.,1995

3. Proteinase-activated receptors;Macfarlane;Pharmacol. Rev.,2001

4. Thrombin signalling and protease-activated receptors;Coughlin;Nature,2000

5. Structural basis for thrombin activation of a protease-activated receptor: inhibition of intramolecular liganding;Seeley;Chem. Biol.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3