Effect of cycloheximide on palmitylation of PO protein of the peripheral nervous system myelin

Author:

Agrawal H C1,Agrawal D1

Affiliation:

1. Department of Pediatrics, Washington University School of Medicine, 400 S. Kingshighway, St. Louis, MO 63110, U.S.A.

Abstract

Incubation of rat sciatic nerve slices with Krebs-Ringer bicarbonate buffer containing [3H]palmitic acid resulted in the acylation of the PO glycoprotein and a 24 kDa protein of the peripheral nerve myelin. Radioactivity was removed from PO after treating PO with hydroxylamine (83%) and methanolic KOH (97%). These results provided evidence that the radioactivity incorporated into PO was not due to the metabolic conversion of [3H]palmitic acid into amino acids or sugars. PO was more heavily labelled in the homogenate than in the myelin membrane in 8-day-old rat nerve between 5 min and 2 h of incubation. These results suggested that PO may be primarily acylated in the cell body. Incubation of purified myelin with [1-14C]palmitoyl-CoA resulted in the non-enzymic acylation of PO. This provided evidence of the absence of fatty acyltransferase from the purified peripheral nerve myelin. Glycosylation of PO has been shown to occur in the Golgi complex, and monensin inhibited glycosylation of PO in the homogenate and myelin by 53 and 61% respectively. These results suggest that the processing of PO in the Golgi complex and the assembly of PO into myelin is impaired by monensin. However, fatty acylation of PO was unimpaired by monensin, suggesting that the addition of fatty acids may not occur in the Golgi complex. There was a progressive decrease in the acylation of PO between 5 min (28%) and 2 h (61%) in the presence of cycloheximide, as the pool of previously synthesized PO was gradually depleted. These results also provide evidence that palmitylation of PO is not coupled to protein synthesis, and acylation of this protein probably occurs in the early subcompartment of the Golgi complex, which appears to be insensitive to monensin.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3