The metabolism of cyclic nucleotides in the guinea-pig pancreas. Cyclic AMP phosphodiesterase and cyclic GMP phosphodiesterase

Author:

Methven Patricia1,Lemon Marius1,Bhoola Kanti1

Affiliation:

1. Department of Pharmacology, The Medical School, University of Bristol, Bristol BS8 1TD, U.K.

Abstract

Both cyclic AMP phosphodiesterase and cyclic GMP phosphodiesterase were recovered mainly from the supernatant fractions of guinea-pig pancreas, but a higher proportion of the activity of the former was associated with the pellet fractions. The activities in the supernatant were not separated by gel filtration, but were clearly separated by subsequent chromatography on an anion-exchange resin. The activities of cyclic AMP phosphodiesterase and cyclic GMP phosphodiesterase had high-affinity (Km 6.5±1.1μm and 31.9±3.9μm respectively) and low-affinity (Km 0.56±0.05mm and 0.32±0.03mm respectively) components. The activity of neither enzyme was affected by the pancreatic secretogens, cholecystokinin-pancreozymin, secretin and carbachol. Removal of ions by gel filtration resulted in a marked reduction in cyclic nucleotide phosphodiesterase activity, which could be restored by addition of Mg2+. Mn2+ (3mm) was as effective as Mg2+ (3mm) in the case of cyclic AMP phosphodiesterase, but was less than half as effective in the case of cyclic GMP phosphodiesterase. The metal-ion chelators, EDTA and EGTA, also decreased activity. Ca2+ (1mm) did not affect the activity of cyclic nucleotide phosphodiesterase when the concentration of Mg2+ was 3mm. At concentrations of Mg2+ between 0.1 and 1mm, 1mm-Ca2+ was activatory, and at concentrations of Mg2+ below 0.1mm, 1mm-Ca2+ was inhibitory. These results are discussed in terms of the possible significance of cyclic nucleotide phosphodiesterase in the physiological control of cyclic nucleotide concentrations during stimulus–secretion coupling.

Publisher

Portland Press Ltd.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3