Short-term impairment of energy production in isolated rat liver mitochondria by hypoxia/reoxygenation: involvement of oxidative protein modification

Author:

SCHILD Lorenz1,REINHECKEL Thomas1,WISWEDEL Ingrid1,AUGUSTIN Wolfgang1

Affiliation:

1. Otto-von-Guericke-University, Medical Faculty, Department of Pathobiochemistry, Leipziger Str. 44, 39120 Magdeburg, Germany

Abstract

The aim of the present study was to elucidate the role of mitochondria in liver impairment after ischaemia/reperfusion. It is commonly assumed that mitochondria are in part responsible for tissue damage by impaired oxidative phosphorylation as a consequence of the attack of radicals generated within the mitochondria. The principal support for this hypothesis was found by exposing isolated mitochondria to temporary hypoxia in combination with alterations of substrate supply. Rat liver mitochondria treated in this way responded with impaired ADP-stimulated respiration after reoxygenation, which decreased with time of hypoxia and reoxygenation. The decline of the activity of the NADH-cytochrome c-oxidoreductase complex found under these conditions is likely to cause the drop in active respiration. No changes in the content of respiratory chain complexes, determined by Blue Native PAGE, could be demonstrated. However, oxidative modifications of mitochondrial proteins, indicated by carbonyl formation, were found. Likewise, products of lipid peroxidation, such as lipid peroxides and malondialdehyde, were formed. Mitochondria were still able to build up a transmembrane potential and did not show drastic changes in membrane conductivity after hypoxia/reoxygenation stress. The presence of water-soluble antioxidants exhibited a beneficial effect, diminishing the decline of active respiration after 5 min of hypoxia and 10 min of reoxygenation. These observations strongly suggest that mitochondria play a pathogenic role in ischaemia/reperfusion injury, which is at least in part mediated by an oxygen-derived free-radical-linked mechanism.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3