Relationship of human liver dihydrodiol dehydrogenases to hepatic bile-acid-binding protein and an oxidoreductase of human colon cells

Author:

HARA Akira,MATSUURA Kazuya1,TAMADA Yoshiyuki1,SATO Kumiko1,MIYABE Yoshiyuki1,DEYASHIKI Yoshihiro1,ISHIDA Naoko1

Affiliation:

1. Biochemistry Laboratory, Gifu Pharmaceutical University, Mitahora-higashi, Gifu 502, Japan

Abstract

We previously isolated three monomeric dihydrodiol dehydrogenases, DD1, DD2 and DD4, from human liver, and cloned a cDNA (C9) thought to encode DD2, which is identical with those for human bile-acid-binding protein and an oxidoreductase of human colon carcinoma HT29 cells. In the present study we have provided evidence that the C9 cDNA clone encodes DD1, not DD2. A recombinant enzyme expressed from the cDNA in a bacterial system was purified, and its catalytic properties, bile-acid-binding ability and primary sequence were compared with those of the hepatic dihydrodiol dehydrogenases. The results show that DD1 encoded by C9 possesses prostaglandin F synthase activity but low affinity for lithocholic acid, whereas DD2, showing differences of six amino acid residues from the DD1 sequence, exhibited high-affinity binding for the bile acid. Refined relationship between dihydrodiol dehydrogenases and their related proteins of human tissues is proposed.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3