Light-dependent changes in redox status of the plastidic acetyl-CoA carboxylase and its regulatory component

Author:

KOZAKI Akiko1,SASAKI Yukiko

Affiliation:

1. Laboratory of Plant Molecular Biology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan

Abstract

Plastidic acetyl-CoA carboxylase (ACCase; EC 6.4.1.2), which catalyses the synthesis of malonyl-CoA and is the regulatory enzyme of fatty acid synthesis, is activated by light, presumably under redox regulation. To obtain evidence of redox regulation in vivo, the activity of ACCase was examined in pea chloroplasts isolated from plants kept in darkness (dark-ACCase) or after exposure to light for 1 h (light-ACCase) in the presence or absence of a thiol-reducing agent, dithiothreitol (DTT). The protein level was similar for light-ACCase and dark-ACCase, but the activity of light-ACCase in the absence of DTT was approx. 3-fold that of dark-ACCase. The light-ACCase and dark-ACCase were activated approx. 2-fold and 6-fold by DTT respectively, indicating that light-ACCase was in a much more reduced, active form than the dark-ACCase. This is the first demonstration of the light-dependent reduction of ACCase in vivo. Measurement of the activities of ACCase, carboxyltransferase and biotin carboxylase in the presence and absence of DTT, and the thiol-oxidizing agent, 5,5ʹ-dithiobis-(2-nitrobenzoic) acid, revealed that the carboxyltransferase reaction, but not the biotin carboxylase reaction, was redox-regulated. The cysteine residue(s) responsible for redox regulation probably reside on the carboxyltransferase component. Measurement of the pH dependence of biotin carboxylase and carboxyltransferase activities in the ACCase suggested that both components affect the activity of ACCase in vivo at a physiological pH range. These results suggest that the activation of ACCase by light is caused partly by the pH-dependent activation of two components and by the reductive activation of carboxyltransferase.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3