The hydrophobic core region governs mutant prion protein aggregation and intracellular retention

Author:

Biasini Emiliano12,Tapella Laura12,Restelli Elena12,Pozzoli Manuela12,Massignan Tania13,Chiesa Roberto12

Affiliation:

1. Dulbecco Telethon Institute, Milan 20156, Italy

2. Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Via G. La Masa 19, Milan, 20156, Italy

3. Department of Biochemistry and Molecular Pharmacology, Mario Negri Institute for Pharmacological Research, Via G. La Masa 19, Milan, 20156, Italy

Abstract

Approx. 15% of human prion diseases have a pattern of autosomal dominant inheritance, and are linked to mutations in the gene encoding PrP (prion protein), a GPI (glycosylphosphatidylinositol)-anchored protein whose function is not clear. The cellular mechanisms by which PrP mutations cause disease are also not known. Soon after synthesis in the ER (endoplasmic reticulum), several mutant PrPs misfold and become resistant to phospholipase cleavage of their GPI anchor. The biosynthetic maturation of the misfolded molecules in the ER is delayed and, during transit in the secretory pathway, they form detergent-insoluble and protease-resistant aggregates, suggesting that intracellular PrP aggregation may play a pathogenic role. We have investigated the consequence of deleting residues 114–121 within the hydrophobic core of PrP on the aggregation and cellular localization of two pathogenic mutants that accumulate in the ER and Golgi apparatus. Compared with their full-length counterparts, the deleted molecules formed smaller protease-sensitive aggregates and were more efficiently transported to the cell surface and released by phospholipase cleavage. These results indicate that mutant PrP aggregation and intracellular retention are closely related and depend critically on the integrity of the hydrophobic core. The discovery that Δ114–121 counteracts misfolding and improves the cellular trafficking of mutant PrP provides an unprecedented model for assessing the role of intracellular aggregation in the pathogenesis of prion diseases.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference57 articles.

1. Fishing for prion protein function;Chiesa;PLoS Biol.,2009

2. Novel proteinaceous infectious particles cause scrapie;Prusiner;Science,1982

3. Cell-free formation of protease-resistant prion protein;Kocisko;Nature,1994

4. In vitro generation of infectious scrapie prions;Castilla;Cell,2005

5. Prions;Prusiner;Proc. Natl. Acad. Sci. U.S.A.,1998

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3