Association of bile-salt-dependent lipase with membranes of human pancreatic microsomes is under the control of ATP and phosphorylation

Author:

PASQUALINI Eric1,CAILLOL Nathalie1,MAS Eric1,BRUNEAU Nadine1,LEXA Doris2,LOMBARDO Dominique1

Affiliation:

1. INSERM Unité 260-Faculté de Médecine-Timone, 27, Bld Jean Moulin, 13385 Marseille, Cedex 05, France

2. CNRS UPR 9036-IBSM, 31 chemin J. Aiguier, 13402 Marseille, Cedex 20, France

Abstract

Bile-salt-dependent lipase (BSDL) is secreted by the pancreas into the duodenum, where it catalyses the hydrolysis of dietary lipid esters on activation by bile salts. The secretion pathway of BSDL is comparable with that of other digestive enzymes produced by pancreatic acinar cells. However, in contrast with these other enzymes, BSDL is partly associated with endoplasmic reticulum membranes as part of a folding complex, including a Grp94-related protein to which BSDL is transiently linked. The release of BSDL from membranes occurs once its glycosylation is completed [Bruneau and Lombardo (1995) J. Biol. Chem. 270, 13524-13533]. In the present study, investigations concerning the mechanism of association/dissociation of BSDL with membranes of microsomes were performed. For this purpose the role of ATP and that of the possible phosphorylation of BSDL were examined. For the first time, it is shown that human pancreatic BSDL is phosphorylated, probably at a serine residue, during its transport within the acinar cell. The phosphorylation of BSDL is provoked by calphostin C, an inhibitor of protein kinase C. In the presence of 1-(isoquinolinesulphonyl)2-methylpiperazine, a non-specific inhibitor of serine/threonine protein kinase A, C or G, or of calcium chelator 1,2-bis(O-aminophenoxy)ethane-N,N,Nʹ,Nʹ-tetra-acetic tetra(acetoxymethyl)ester, the phosphorylation of BSDL elicited by calphostin C is abolished. These data suggested that the phosphorylation of BSDL within human pancreatic microsomes is under the control of a cascade of protein kinases. We have also shown that the phosphorylation of BSDL appears to be involved in the release of the enzyme from microsome membranes. Nevertheless ATP, which modifies the conformation of BSDL, triggers this association, and an unhydrolysable ATP analogue was unable to promote it.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3