Indirect recognition of pathogen effectors by NLRs

Author:

Ao Kevin12ORCID,Li Xin12ORCID

Affiliation:

1. 1Michael Smith Laboratories, University of British Columbia, Vancouver BC V6T 1Z4, Canada

2. 2Department of Botany, University of British Columbia, Vancouver BC V6T 1Z4, Canada

Abstract

Abstract To perceive pathogen threats, plants utilize both plasma membrane-localized and intracellular receptors. Nucleotide-binding domain leucine-rich repeat containing (NLR) proteins are key receptors that can recognize pathogen-derived intracellularly delivered effectors and activate downstream defense. Exciting recent findings have propelled our understanding of the various recognition and activation mechanisms of plant NLRs. Some NLRs directly bind to effectors, but others can perceive effector-induced changes on targeted host proteins (guardees), or non-functional host protein mimics (decoys). Such guarding strategies are thought to afford the host more durable resistance to quick-evolving and diverse pathogens. Here, we review classic and recent examples of indirect effector recognition by NLRs and discuss strategies for the discovery and study of new NLR-decoy/guardee systems. We also provide a perspective on how executor NLRs and helper NLRs (hNLRs) provide recognition for a wider range of effectors through sensor NLRs and how this can be considered an expanded form of indirect recognition. Furthermore, we summarize recent structural findings on NLR activation and resistosome formation upon indirect recognition. Finally, we discuss existing and potential applications that harness NLR indirect recognition for plant disease resistance and crop resilience.

Publisher

Portland Press Ltd.

Subject

Molecular Biology,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3