Pre-steady-state kinetic studies on cytoplasmic sheep liver aldehyde dehydrogenase

Author:

MacGibbon Alastair K. H.1,Blackwell Leonard F.1,Buckley Paul D.1

Affiliation:

1. Department of Chemistry, Biochemistry and Biophysics, Massey University, Palmerston North, New Zealand

Abstract

Stopped-flow experiments in which sheep liver cytoplasmic aldehyde dehydrogenase (EC 1.2.1.3) was rapidly mixed with NAD+ and aldehyde showed a burst of NADH formation, followed by a slower steady-state turnover. The kinetic data obtained when the relative concentrations and orders of mixing of NAD+ and propionaldehyde with the enzyme were varied were fitted to the following mechanism: [Formula: see text] where the release of NADH is slow. By monitoring the quenching of protein fluorescence on the binding of NAD+, estimates of 2×105 litre·mol−1·s−1 and 2s−1 were obtained for k+1 and k−1 respectively. Although k+3 could be determined from the dependence of the burst rate constant on the concentration of propionaldehyde to be 11s−1, k+2 and k−2 could not be determined uniquely, but could be related by the equation: (k−2+k+3)/k+2 =50×10−6mol·litre−1. No significant isotope effect was observed when [1-2H]propionaldehyde was used as substrate. The burst rate constant was pH-dependent, with the greatest rate constants occurring at high pH. Similar data were obtained by using acetaldehyde, where for this substrate (k−2+k+3)/k+2=2.3×10 −3mol·litre−1 and k+3 is 23s−1. When [1,2,2,2-2H]acetaldehyde was used, no isotope effect was observed on k+3, but there was a significant effect on k+2 and k−2. A burst of NADH production has also been observed with furfuraldehyde, trans-4-(NN-dimethylamino)cinnamaldehyde, formaldehyde, benzaldehyde, 4-(imidazol-2-ylazo)benzaldehyde, p-methoxybenzaldehyde and p-methylbenzaldehyde as substrates, but not with p-nitrobenzaldehyde.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3