Biochemical consequences of sedlin mutations that cause spondyloepiphyseal dysplasia tarda

Author:

Choi Mei Y.1,Chan Caleb C. Y.1,Chan Danny1,Luk Keith D. K.2,Cheah Kathryn S. E.1,Tanner Julian A.1

Affiliation:

1. Department of Biochemistry, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, P.R. China

2. Department of Orthopaedics and Traumatology, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, P.R. China

Abstract

SEDT (spondyloepiphyseal dysplasia tarda) is a late-onset X-linked recessive skeletal dysplasia caused by mutations in the gene SEDL coding for sedlin. In the present paper, we investigated four missense mutations observed in SEDT and compare biochemical and cellular characteristics relative to the wild-type protein to address the mechanism of disease and to gain insight into the function of the sedlin protein. In situ hybridization and immunohistochemical experiments in mouse growth plates revealed sedlin to be predominantly expressed in proliferating and hypertrophic chondrocytes. Cell culture studies showed that the wild-type protein localized predominantly in the vicinity of the nucleus and the Golgi, with further localization around the cytoplasm, whereas mutation resulted in mislocalization. The D47Y mutant was expressed similarly to the wild-type, but the S73L, F83S and V130D mutants showed particularly low levels of expression that were rescued in the presence of the proteasome inhibitor MG132 (benzyloxycarbonyl-leucylleucylleucinal). Furthermore, whereas the D47Y mutant folded similarly and had similar stability to the wild-type sedlin as shown by CD and fluorescence, the S73L, F83S and V130D mutants all misfolded during expression. Two independent assays showed that the D47Y mutation resulted in an increased affinity for the transport protein particle component Bet3 compared with the wild-type sedlin. Our results suggest that the sedlin mutations S73L, F83S and V130D cause SEDT by sedlin misfolding, whereas the D47Y mutation may influence normal TRAPP (transport protein particle) dynamics.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3