Leucine degradation in cell-free extracts of skeletal muscle

Author:

Odessey R,Goldberg A L

Abstract

Since skeletal muscle is the major site in the body for oxidation of leucine, isoleucine and valine, the pathway and control of leucine oxidation were investigated in cell-free preparations of rat muscle. Leucine was found to be transaminated to 4-methyl-2-oxopentanoate, which was then oxidatively decarboxylated. On differential centrifugation 70–80% of the transaminase activity was recovered in the soluble fraction of the cell, and the remaining amount in the mitochondrial fraction. The transaminase, from both fractions had similar pH optima and both were markedly inhibited by Ca2+. Thus changes in cellular Ca2+ concentration may regulate transaminase activity. Both transaminases had a much higher affinity for 2-oxoglutarate than for pyruvate. Therefore the utilization of amino groups from leucine for the biosynthesis of alanine in muscle [Odessey, Khairallah & Goldberg (1974) J. Biol. Chem. 249, 7623–7629] in vivo involves transamination with 2-oxoglutarate to produce glutamate, which is then transaminated with pyruvate to produce alanine. The dehydrogenase activity assayed by the decarboxylation of methyl-2-oxo[1-14C]pentanoate was localized exclusively in the fraction containing mitochondria and required NAD+, CoA and thiamin pyrophosphate for optimal activity. Measurements of competitive inhibition suggested that the oxo acids of leucine, isoleucine and valine are all decarboxylated by the same enzyme. The enzyme activity was decreased by 90% upon freezing or sonication and was stimulated severalfold by Mg2+, K+ and phosphate ions. In addition, it was markedly inhibited by ATP, but not by non-metabolizable analogues. This observation suggests that splitting of ATP is required for inhibition. The oxidative decarboxylation of 4-methyl-2-oxopentanoate by the dehydrogenase appears to be the rate-limiting step for leucine oxidation in muscle homogenates and also in intact tissues. In fact, rat muscles incubated with [1-14C]leucine release 1-14C-labelled oxo acid into the medium at rates comparable with the rate of decarboxylation. Intact muscles also released the oxo acids of [1-14C]valine or [1-14C]isoleucine, but not of other amino acids. These findings suggest that muscle is the primary source of the branched-chain oxo acids found in the blood.

Publisher

Portland Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3