Re-activation of Clostridium symbiosum glutamate dehydrogenase from subunits denatured by urea

Author:

AGHAJANIAN Suren1,ENGEL Paul C.1

Affiliation:

1. Department of Biochemistry, University College Dublin, Belfield, Dublin 4, Republic of Ireland

Abstract

In a study of the re-activation of urea-denatured clostridial glutamate dehydrogenase (GDH) the maximum re-activation achieved without any added ligands was about 6%, but with NAD+ and 2-oxoglutarate in combination about 70%. NAD+ alone was also effective but 2-oxoglutarate was not, in striking contrast with the opposite pattern for protection of this enzyme against unfolding in urea [Aghajanian, Martin and Engel (1995) Biochem. J. 311, 905–910]. The extent of re-activation was not increased by raising the incubation temperature to 37 °C and was independent of the time of enzyme denaturation. CD and fluorimetric studies showed that dilution of denatured enzyme into potassium phosphate buffer led to rapid (half-time < 3–5 s) formation of ‘structured’ intermediates with secondary structure similar to that of native enzyme. These intermediate molecules were inactive, behaved as monomers on a size-exclusion column, and were unable to associate to give the native hexameric structure. Addition of NAD+ facilitated isomerization of these ‘structured’ monomers into a form(s) capable of re-activation. A side effect in the refolding process was non-specific aggregation, depending on final enzyme concentration. The hexamer fraction from re-activated samples, however, showed the same specific activity as native enzyme. The portion of the enzyme that is not lost through aggregation thus appears to regain the native structure fully. Detailed time-course studies showed that re-activation follows second-order kinetics, suggesting that formation of a dimer may be the rate-limiting step. The possible mechanism for the unfolding and refolding processes of clostridial GDH and effects of coenzyme and substrate on these are discussed in relation to the known crystal structure.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3