Isolation and characterization of advanced glycation end products derived from the in vitro reaction of ribose and collagen

Author:

PAUL R. Gordon1,AVERY C. Nicholas1,SLATTER A. David1,SIMS J. Trevor1,BAILEY J. Allen1

Affiliation:

1. Collagen Research Group, Division of Molecular and Cellular Biology, University of Bristol, Langford, Bristol BS18 7DU, U.K.

Abstract

An amino acid component, NFC-1, when formed in vitro by the reaction of ribose and protein was shown to comprise a complex mixture of high and low molecular AGE compounds. Two low-molecular-weight components have been successfully isolated and their structure determined. These were αNFC-1 [NΔ-(4-oxo-5-dihydroimidazol-2-yl)-l-ornithine] and βNFC-1 a 4-imidazolon-2-yl derivative existing in three tautomeric forms. These imidazolone compounds have been shown to originate from the reaction of arginine with glyoxal and methylglyoxal, respectively. A third ninhydrin-positive AGE, γNFC-1, was shown to be composed of a number of chromatographically similar compounds which have not yet been characterized.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3