Mutation of tyrosine-194 and lysine-198 in the catalytic site of pig 3α/β,20β-hydroxysteroid dehydrogenase

Author:

NAKAJIN Shizuo1,TAKASE Noriko1,OHNO Shuji2,TOYOSHIMA Satoshi1,BAKER Michael E.3

Affiliation:

1. Department of Biochemistry, Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41, Ebara, Shinagawa-ku, Tokyo 142-8501, Japan

2. Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Nihon University, Narashinodai 7-7-1, Funabashi-shi, Chiba 274-8555, Japan

3. Department of Medicine, 0623B, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, U.S.A.

Abstract

Pig 3α/β,20β-hydroxysteroid dehydrogenase is an NADPH-dependent enzyme that catalyses the reduction of ketones on steroids and aldehydes and ketones on various xenobiotics, like its homologue carbonyl reductase. 3α/β,20β-Hydroxysteroid dehydrogenase and carbonyl reductase are members of the short-chain dehydrogenases/reductase family, in which a tyrosine residue and a lysine residue have been identified as catalytically important. In pig 20β-hydroxysteroid dehydrogenase these residues are tyrosine-194 and lysine-198. Here we report the effect on the reduction of two ketone and two aldehyde substrates by pig 3α/β,20β-hydroxysteroid dehydrogenase in which tyrosine-194 has been mutated to phenylalanine and cysteine, and lysine-198 has been mutated to isoleucine and arginine. Mutants with phenylalanine-194 or isoleucine-198 are inactive. Depending on the substrate, the mutant with cysteine-194 has a catalytic efficiency of 0.4–1% and the mutant with arginine-198 has a catalytic efficiency of 4–23% of the wild-type enzyme. We also mutated tyrosine-81 and tyrosine-253 to phenylalanine. Although both tyrosines are conserved in 3α/β,20β-hydroxysteroid dehydrogenase and carbonyl reductase, depending on the substrate, the mutant enzymes are as active as, or more active than, wild-type enzyme.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3